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ABSTRACT: Various block (graft) copolymers have been
prepared by combination of acyclic diene metathesis
(ADMET) polymerization of 9,9-dialkyl-2,7-divinyl-fluorene
with Cu-catalyzed atom transfer radical polymerization (ATRP)
of styrene using macroinitiators prepared by introduction of
initiating functionalities into poly(9,9-dialkylfluorene-2,7-
vinylene)s (PFVs) chain ends: a precise synthesis of the
amphiphilic ABCBA-type block copolymers has also been
attained by subsequent combination with click reaction after
modification of the chain end with NaN3.

Organic electronics are one of the most important
emerging technologies, and conjugated polymers, such

as poly(p-arylene vinylene)s, poly(thiophene)s, are promising
semiconducting materials.1−4 Synthesis of structurally regular,
chemically pure polymers by development of new synthetic
methods attracts considerable attention,1 because their device
performances are affected by polymer structural regularity,
chemical purity, and supramolecular order.2,3 Fluorene-based
electroluminescent (EL) polymers are known to be promising
in terms of a facile introduction of substituents into the C9
position, high photoluminescence (PL) and EL efficiencies, and
thermal and chemical stabilities.5−7

We recently demonstrated syntheses of defect-f ree, stereo-
regular (all-trans), high molecular weight poly(9,9-dialkylfluor-
ene-2,7-vinylene)s (PFVs), poly(2,5-dialkylphenylene-1,4-
vinylene)s (PPVs) by acyclic diene metathesis (ADMET)
polymerization of 9,9-dialkyl-2,7-divinyl-fluorene.5,8−10 Because
the resultant polymers prepared by Ru-carbene catalyst
possessed well-defined polymer chain ends (as vinyl
group),5b−d,9 a facile, exclusive end-functionalization can be
achieved by treating the vinyl groups with Mo-alkylidene (Mo
cat.) followed by Wittig-type cleavage with aldehyde:5b,d,11,12

we thus demonstrated precise syntheses of ABA type
amphiphilic triblock copolymer by grafting PEG [poly(ethylene
glycol)] into both the PFV chain ends5b and of PFVs
containing oligo(thiophene)s in both the chain ends which
exhibiting unique emission properties by an energy transfer.5d

Formation of regular one-dimensional conjugated structures on
the nanoscale should be thus expected by exploiting the specific
assembling properties of rod−coil block copolymers,13,14 and

the control of the block lengths via synthesis shall open the way
to fine-tuning the lateral dimensions of these nanostructures.
On the basis of the above results, in this paper, we wish to

present that various block (graft) copolymers have been
prepared by combination of ADMET technique with Cu
catalyzed atom transfer radical polymerization (ATRP)
technique by using macroinitiators prepared by introductions
of initiating functionalities into PFV chain ends (graf ting f rom
approach).15,16 Moreover, we succeeded in preparation of
amphiphilic ABCBA type block copolymers containing PEG
fragment by additional combination with click chemistry
(graf ting to approach).17

Acyclic diene metathesis (ADMET) polymerization of 2,7-
divinyl-9,9-di-n-octylfluorene was conducted in the presence of
Ru catalyst according to our established conditions under a
reduced pressure (reaction time, 3 h; Scheme 1).5b−d The
resultant poly(9,9-di-n-octylfluorene-2,7-vinylene) (PFV) pos-
sessed high molecular weight with unimodal molecular weight
distribution (by GPC analysis: Mn = 1.96 × 104, Mw/Mn =
1.94).18 As demonstrated previously,5 the resultant PFVs
possessed exclusive trans regularity as well as vinyl groups at
the both polymer chain ends as confirmed by 1H NMR
spectra.5b−d,18 According to our reported procedure shown in
Scheme 1,5b−d the vinyl groups at the PFV chain ends were
treated with Mo cat. (2.5 equiv to the vinyl group to generate
Mo-alkylidene moieties) and the subsequent addition of excess
amount (ca. 2 equiv to Mo) of various aldehydes (ArCHO)
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gave PFVs containing functionalities at the both polymer chain
ends. Protons corresponding to the chain ends could be
observed in the 1H NMR spectra,18 and the Mn values in the
resultant macroinitoators, PFV(C6H4CH2Br)2 and PFV-
(C6H4OCOCMe2Br)2, estimated by 1H NMR spectra, were
relatively close to those estimated based on the exact Mn value
of PFV (corrected from GPC data as demonstrated
previously),19 strongly suggesting that both polymer chain
ends could be exclusively modified by adopting the present
approach.19 The resultant macroinitiators, PFV(C6H4CH2Br)2
and PFV(C6H4OCOCMe2Br)2, were added in styrene in the

presence of CuBr, dNbipy (4,4-dinonyl-2,2′-dipyridyl) at 90 °C
for conducting subsequent atom transfer radical polymerization
(ATRP), and the results are summarized in Table 1.
The NMR spectra in the resultant polymers indicate that

styrene repeat units were incorporated and the styrene contents
increased over time (upon increasing the yields, conversion).
As shown in Figure 1, relatively linear relationships between Mn

values estimated by their 1H NMR spectra (based on
integration ratios of protons between styrene and PFV)18 and
the conversion or polymerization time were observed, and
relatively close relationships were observed when the Mn values

Scheme 1. Syntheses of Macroinitiators [PFV(C6H4CH2Br)2, PFV(C6H4OCOCMe2Br)2] and Block Copolymers [PFV-(PS-
Br)2] by Combination of Acyclic Diene Metathesis (ADMET) Polymerization with Cu-Catalyzed Atom Transfer Radical
Polymerization (ATRP)

Table 1. Synthesis of Block Copolymers, Poly(styrene-bl-PFV-bl-styrene)s [PFV-(PS-Br)2], by Cu-Catalyzed Atom Transfer
Radical Polymerization (ATRP) of Styrene Initiated from Macroinitiators Containing PFV [PFV(C6H4CH2Br)2 or
PFV(C6H4OCOCMe2Br)2]

a

PFV-(PS-Br)2

run initiatorb time/h Mn(GPC)
c × 10−4 Mn(NMR)

d × 10−4 Mw/Mn
c conve/%

1 PFV(C6H4CH2Br)2 24 2.99 1.55 1.49 4.3
2 PFV(C6H4CH2Br)2 35 3.51 1.77 1.49 5.5
3 PFV(C6H4CH2Br)2 48 6.10 3.60 1.48 7.5
4 PFV(C6H4OCOCMe2Br)2 12 2.86 1.40 1.70 5.0
5 PFV(C6H4OCOCMe2Br)2 24 3.40 1.60 1.50 6.0
6 PFV(C6H4OCOCMe2Br)2 36 4.10 2.00 1.58 7.0

aConditions: PFV(C6H4CH2Br)2 or PFV(C6H4OCOCMe2Br)2/CuBr/DNbipy = 1/8.5/17 (molar ratio), the polymerization of styrene was
conducted in bulk at 90 °C (details are shown in the Supporting Information),18 dNbipy: 4,4-dinonyl-2,2′-dipyridyl. bEstimated molecular weight:
Mn(NMR) = 1.22 × 104 [PFV(C6H4CH2Br)2], 1.24 × 104 [PFV(C6H4OCOCMe2Br)2].

cGPC data in THF vs polystyrene standards. dEstimated by
1H NMR spectra (integration ratios of protons between styrene and PFV). eStyrene conversion in %.
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by GPC were employed for the plots. These would suggest that
these polymerizations proceeded in a living manner.
However, the initiation efficiencies in the macromoinitiator

were uncertain through these experiments, and we, therefore,
converted the bromide in the chain end (the sample in run 4,

Table 1) by treating NaN3 and the resultant polymer, PFV-(PS-
N3)2, was reacted with 4-pentanoate terminated poly(ethylene
glycol) methyl ether (Mn = 2000, Aldrich) in the presence of
CuBr and dNbipy in THF (at 35 °C for 5 days). The results are
shown in Table 2.

1H NMR spectra for the resultant polymers possessed
protons ascribed to PEG units, suggesting incorporation of
PEG segment. Note that the Mn values estimated by 1H NMR
spectra (on the basis of methylene protons in the PEG
segment) were very close to those calculated (based on Mn

value of PFV and integration ratio of PFV and styrene). The
results are reproducible, as demonstrated in Table 2. These
results strongly demonstrate that precise, exclusive synthesis of
amphiphilic ABCBA-type block copolymers have been attained
by adopting this approach (Scheme 2). Moreover, importantly,
the results strongly demonstrate that the end-functionalization
of PFV chain ends [preparation of macroinitiators], ATRP of
styrene, and subsequent treatment with NaN3 took place with
exclusive yields in all cases.
Taking into account the above facts, we have shown that

various block (graft) copolymers have been prepared by
adopting a combination of ADMET polymerization of 9,9-
dialkyl-2,7-divinyl-fluorene with ATRP of styrene from macro-
initiators prepared by introductions of initiating functionalities
into the PFV chain ends (graf ting f rom approach). Moreover,
the precise synthesis of amphiphilic ABCBA-type block
copolymers has been attained by subsequent combination
with click reaction. As described above, formation of regular
one-dimensional conjugated structures on the nanoscale should
be thus expected by exploiting the specific assembling
properties of rod−coil block copolymers,13,14 and the precise
control of the amphiphilic nature as well as of the block lengths
via synthesis shall open the way to fine-tuning the lateral
dimensions of these nanostructures. Because the methodology
presented here should also have many applications (with
various monomers for ATRP, and click reactions), the results
presented here should be highly promising for designing precise
conjugated materials for the desired purposes.

Figure 1. Plots of Mn values (by GPC, NMR) vs time (left),
conversion (right) in ATRP of styrene. Mn values of PFV-(PS-Br)2
from PFV(C6H4CH2Br)2 by ⧫ (GPC), ◊ (NMR); from PFV-
(C6H4OCOCMe2Br)2 by ● (GPC), ○ (NMR). The detailed results
are shown in Table 1.

Table 2. Synthesis of ABCBA Block Copolymers, PFV-(PS-
bl-PEG)2

a

copolymer
Mn (GPC)

b

× 10−4
Mn(NMR)

c

× 10−4
Mn(calcd)

d

× 10−4 Mw/Mn
b yieldf/%

PFV-(PS-
Br)2

g
2.86 1.40 1.70

PFV-(PS-
N3)2

2.50 1.60 95.0

PFV-(PS-bl-
PEG)2

2.50 1.29 1.32 1.44 91.6

PFV-(PS-bl-
PEG)2

2.46 1.30 1.32 1.44 90.0

aConditions: PFV-(PS-N3)2/4-pentanoate terminated poly(ethylene
glycol) methyl ether/CuBr/dNbipy = 1/3.5/5/10 (molar ratio) in 2.0
mL of THF at 35 °C for 5 days. bGPC data in THF versus polystyrene
standards. cEstimated value by 1H NMR spectra (integration ratios of
protons between styrene and PFV, or on the basis of PEG).
dCalculated value based on the exact Mn value of PFV (corrected
from GPC data, 1.22 × 104)19 and integration ratio of PFV and styrene
in the 1H NMR spectra. fIsolated yield. gSample in run 4, Table 1.

Scheme 2. Synthesis of Amphiphilic ABCBA Block Copolymers, PFV-(PS-bl-PEG)2, by Combination of ATRP with Click
Coupling
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